Phosphoinositide 3-Kinase Binds to TRPV1 and Mediates NGF-stimulated TRPV1 Trafficking to the Plasma Membrane

نویسندگان

  • Alexander T. Stein
  • Carmen A. Ufret-Vincenty
  • Li Hua
  • Luis F. Santana
  • Sharona E. Gordon
چکیده

Sensitization of the pain-transducing ion channel TRPV1 underlies thermal hyperalgesia by proalgesic agents such as nerve growth factor (NGF). The currently accepted model is that the NGF-mediated increase in TRPV1 function during hyperalgesia utilizes activation of phospholipase C (PLC) to cleave PIP2, proposed to tonically inhibit TRPV1. In this study, we tested the PLC model and found two lines of evidence that directly challenge its validity: (1) polylysine, a cationic phosphoinositide sequestering agent, inhibited TRPV1 instead of potentiating it, and (2) direct application of PIP2 to inside-out excised patches dramatically potentiated TRPV1. Furthermore, we show four types of experiments indicating that PI3K is physically and functionally coupled to TRPV1: (1) the p85beta subunit of PI3K interacted with the N-terminal region of TRPV1 in yeast 2-hybrid experiments, (2) PI3K-p85beta coimmunoprecipitated with TRPV1 from both HEK293 cells and dorsal root ganglia (DRG) neurons, (3) TRPV1 interacted with recombinant PI3K-p85 in vitro, and (4) wortmannin, a specific inhibitor of PI3K, completely abolished NGF-mediated sensitization in acutely dissociated DRG neurons. Finally, simultaneous electrophysiological and total internal reflection fluorescence (TIRF) microscopy recordings demonstrate that NGF increased the number of channels in the plasma membrane. We propose a new model for NGF-mediated hyperalgesia in which physical coupling of TRPV1 and PI3K in a signal transduction complex facilitates trafficking of TRPV1 to the plasma membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels.

Nociceptors, or pain-sensitive receptors, are unique among sensory receptors in that their sensitivity is increased by noxious stimulation. This process, called sensitization or hyperalgesia, is mediated by a variety of proinflammatory factors, including bradykinin, ATP and NGF, which cause sensitization to noxious heat stimuli by enhancing the membrane current carried by the heat- and capsaici...

متن کامل

Mechanism for phosphoinositide selectivity and activation of TRPV1 ion channels

Although PI(4,5)P2 is believed to play an essential role in regulating the activity of numerous ion channels and transporters, the mechanisms by which it does so are unknown. Here, we used the ability of the TRPV1 ion channel to discriminate between PI(4,5)P2 and PI(4)P to localize the region of TRPV1 sequence that interacts directly with the phosphoinositide. We identified a point mutation in ...

متن کامل

Transient Receptor Potential Vanilloid Type 1–Dependent Regulation of Liver-Related Neurons in the Paraventricular Nucleus of the Hypothalamus Diminished in the Type 1 Diabetic Mouse

The paraventricular nucleus (PVN) of the hypothalamus controls the autonomic neural output to the liver, thereby participating in the regulation of hepatic glucose production (HGP); nevertheless, mechanisms controlling the activity of liver-related PVN neurons are not known. Transient receptor potential vanilloid type 1 (TRPV1) is involved in glucose homeostasis and colocalizes with liver-relat...

متن کامل

Sensitization and translocation of TRPV1 by insulin and IGF-I

Insulin and insulin-like growth factors (IGFs) maintain vital neuronal functions. Absolute or functional deficiencies of insulin or IGF-I may contribute to neuronal and vascular complications associated with diabetes. Vanilloid receptor 1 (also called TRPV1) is an ion channel that mediates inflammatory thermal nociception and is present on sensory neurons. Here we demonstrate that both insulin ...

متن کامل

Morphine-induced analgesic tolerance is associated with alteration of protein kinase Cγ and transient receptor potential vanilloid type 1 genes expression in rat lumbosacral cord and midbrain

Introduction: Transient receptor potential vanilloid type 1 (TRPV1) and protein kinase Cγ (PKCγ) are involved in sensitization/desensitization to noxious stimuli. We aimed to examine the gene expression levels of TRPV1 and PKCγ in rat lumbosacral cord and midbrain on days 1, 4 and 8 of induction of morphine analgesic tolerance. Methods: Two groups of male Wistar rats received ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 128  شماره 

صفحات  -

تاریخ انتشار 2006